If it's not what You are looking for type in the equation solver your own equation and let us solve it.
160t-16t^2+2=0
a = -16; b = 160; c = +2;
Δ = b2-4ac
Δ = 1602-4·(-16)·2
Δ = 25728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25728}=\sqrt{64*402}=\sqrt{64}*\sqrt{402}=8\sqrt{402}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-8\sqrt{402}}{2*-16}=\frac{-160-8\sqrt{402}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+8\sqrt{402}}{2*-16}=\frac{-160+8\sqrt{402}}{-32} $
| -5(v+3)+3v+7=6v+12 | | 17m=50 | | 2s²-98=0 | | 28y+13=25y+26-12 | | -4=n/7-6 | | 13w+15w-6+2=-3w+2-6 | | 0.4(3z+6)+3.6=0.5(3z-6) | | 3×-4^y=12 | | -30+27x=11x+ | | 1=-1+x/8 | | 6(x+7)+11=10x-4(x-6) | | 36×-9y=54 | | 12x-2(3x-5)=5x+12 | | 28-9n=2n | | (-6x+4)/2=11 | | |x^2+x+1|-x^2+x+1=0 | | R150=(150)50x | | (-6x+4)/2=8 | | 2(x+5)=7x+3-5x+7 | | 3*((-6x+4)/2+3)=24 | | 3.5x=2.8x+4.9 | | 3*((-6x+4)/2+3)-5=19 | | -18=-9z-9 | | 8x-5=3(x+3) | | (7x+4)+(3x-16)=90 | | 2u^2+3=5u | | 4x-3x=8.4 | | -4(x-4)+2=2(x-1)+26 | | 3x+25=-x+1 | | 5p+7-5p=-7(p-3( | | r=(2/3)r | | F(3)=3-6x |